Logo Search packages:      
Sourcecode: hamlib version File versions  Download package

elektor507.c

/*
 *  Hamlib KIT backend - Elektor SDR USB (5/07) receiver description
 *  Copyright (c) 2007-2010 by Stephane Fillod
 *
 *
 *   This library is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as
 *   published by the Free Software Foundation; either version 2 of
 *   the License, or (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public
 *   License along with this library; if not, write to the Free Software
 *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "hamlib/rig.h"
#include "token.h"

#include "kit.h"

#ifdef _WIN32
#define USE_FTDI_DLL
#elif defined(HAVE_LIBUSB) && defined(HAVE_USB_H)
#define USE_LIBUSB
#endif

/*
 * Compile this model only if libusb is available
 * or if .DLL is available under Windows
 */
#if defined(USE_FTDI_DLL) || defined(USE_LIBUSB)


static int elektor507_init(RIG *rig);
static int elektor507_cleanup(RIG *rig);
static int elektor507_open(RIG *rig);
static int elektor507_set_freq(RIG *rig, vfo_t vfo, freq_t freq);
static int elektor507_get_freq(RIG *rig, vfo_t vfo, freq_t *freq);
static int elektor507_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val);
static int elektor507_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val);
static int elektor507_set_ant(RIG * rig, vfo_t vfo, ant_t ant);
static int elektor507_get_ant(RIG * rig, vfo_t vfo, ant_t *ant);
static int elektor507_set_conf(RIG *rig, token_t token, const char *val);
static int elektor507_get_conf(RIG *rig, token_t token, char *val);


static const char * elektor507_get_info(RIG *rig);

/*
 * I2C addresses
 */
#define CY_I2C_RAM_ADR  210
#define CY_I2C_EEPROM_ADR  208

/*
 * I2C registers
 */
#define CLKOE_REG 0x09
#define DIV1_REG 0x0c
#define DIV2_REG 0x47
#define XTALCTL_REG 0x12
#define CAPLOAD_REG 0x13
#define PUMPCOUNTERS_REG 0x40
#define CLKSRC_REG 0x44


static int cy_update_pll(RIG *rig, unsigned char IICadr);
static int i2c_write_regs(RIG *rig, unsigned char IICadr, int reg_count, unsigned char reg_adr, 
            unsigned char reg_val1, unsigned char reg_val2, unsigned char reg_val3);
#define i2c_write_reg(rig, IICadr, reg_adr, reg_val) \
            i2c_write_regs(rig, IICadr, 1, reg_adr, reg_val, 0, 0)


#ifdef USE_FTDI_DLL

#ifdef HAVE_WINDOWS_H
#include <windows.h>
#endif
#ifdef HAVE_WINBASE_H
#include <winbase.h>
#endif

#include <math.h>

#define ELEKTOR507_DLL "FTD2XX.dll"


/* Some type definitions needed for dll access */
typedef enum 
{
  FT_OK = 0,
  FT_INVALID_HANDLE = 1,
  FT_DEVICE_NOT_FOUND = 2,
  FT_DEVICE_NOT_OPENED = 3,
  FT_IO_ERROR = 4,
  FT_INSUFFICIENT_RESOURCES = 5,
  FT_INVALID_PARAMETER = 6,
  FT_SUCCESS = FT_OK,
  FT_INVALID_BAUD_RATE = 7,
  FT_DEVICE_NOT_OPENED_FOR_ERASE = 8,
  FT_DEVICE_NOT_OPENED_FOR_WRITE = 9,
  FT_FAILED_TO_WRITE_DEVICE = 10,
  FT_EEPROM_READ_FAILED = 11,
  FT_EEPROM_WRITE_FAILED = 12,
  FT_EEPROM_ERASE_FAILED = 13,
  FT_EEPROM_NOT_PRESENT = 14,
  FT_EEPROM_NOT_PROGRAMMED = 15,
  FT_INVALID_ARGS = 16,
  FT_OTHER_ERROR = 17,
} FT_Result;

typedef FT_Result (__stdcall *FNCFT_Open)(int Index, unsigned long *ftHandle);
typedef FT_Result (__stdcall *FNCFT_Close)(unsigned long ftHandle);
typedef FT_Result (__stdcall *FNCFT_SetBitMode)(unsigned long ftHandle, unsigned char Mask, unsigned char Enable);
typedef FT_Result (__stdcall *FNCFT_SetBaudRate)(unsigned long ftHandle, unsigned long BaudRate);
typedef FT_Result (__stdcall *FNCFT_Write)(unsigned long ftHandle, void *FTOutBuf, unsigned long BufferSize, int *ResultPtr);


struct elektor507_extra_priv_data {
      HMODULE dll;

      FNCFT_Open FT_Open;
      FNCFT_Close FT_Close;
      FNCFT_SetBitMode FT_SetBitMode;
      FNCFT_SetBaudRate FT_SetBaudRate;
      FNCFT_Write FT_Write;

      unsigned long ftHandle;
};

#elif defined(USE_LIBUSB)


#include <errno.h>
#include <usb.h>


#define USB_VID_FTDI          0x0403      /* Future Technology Devices International */
#define USB_PID_FTDI_FT232    0x6001      /* FT232R 8-bit FIFO */

#define FTDI_IN_EP 0x02
#define FTDI_USB_WRITE_TIMEOUT 5000


struct elektor507_extra_priv_data {
      /* empty with libusb */
};

#endif


/* defaults */
#define OSCFREQ         10000 /* kHz unit -> MHz(10) */
#define XTAL_CAL        128

#define TOK_OSCFREQ     TOKEN_BACKEND(1)
#define TOK_XTALCAL     TOKEN_BACKEND(2)

static const struct confparams elektor507_cfg_params[] = {
      { TOK_OSCFREQ, "osc_freq", "Oscillator freq", "Oscillator frequency in Hz",
                  "10000000", RIG_CONF_NUMERIC, { .n = { 0, MHz(30), 1 } }
      },
      { TOK_XTALCAL, "xtal_cal", "Xtal Cal", "Cristal calibration",
            "132", RIG_CONF_NUMERIC, { .n = { 0, 255, 1 } }
      },
      { RIG_CONF_END, NULL, }
};


/*
 * Common data struct
 */
struct elektor507_priv_data {
      struct elektor507_extra_priv_data extra_priv;

      unsigned xtal_cal;      /* 0..255 (-150ppm..150ppm) */
      unsigned osc_freq;      /* kHz */

#define ANT_AUTO  RIG_ANT_1
#define ANT_EXT   RIG_ANT_2
#define ANT_TEST_CLK    RIG_ANT_3
      ant_t ant;        /* current antenna */

      /* CY PLL stuff.
       * This is Qtotal & Ptotal values here.
       */
      int P,Q,Div1N;

      /* FTDI comm stuff */
      unsigned char FT_port;
      int Buf_adr;
#define FT_OUT_BUFFER_MAX 1024
      unsigned char FT_Out_Buffer[FT_OUT_BUFFER_MAX];
};



#ifdef USE_FTDI_DLL

int elektor507_init(RIG *rig)
{
      struct elektor507_priv_data *priv;
      struct elektor507_extra_priv_data *extra_priv;

      priv = (struct elektor507_priv_data*)calloc(sizeof(struct elektor507_priv_data), 1);
      if (!priv) {
            /* whoops! memory shortage! */
            return -RIG_ENOMEM;
      }
      priv->xtal_cal = XTAL_CAL;
      priv->osc_freq = OSCFREQ;
      priv->ant = ANT_AUTO;

      /* DIV1N set to safe default */
      priv->Div1N = 8;
      priv->P = 8;
      priv->Q = 2;

      extra_priv = &priv->extra_priv;

      /* Try to load required dll */
      extra_priv->dll = LoadLibrary(ELEKTOR507_DLL);

      if (!extra_priv->dll) {
            rig_debug(RIG_DEBUG_ERR, "%s: Unable to LoadLibrary %s\n",
                        __FUNCTION__, ELEKTOR507_DLL);
            free(priv);
            return -RIG_EIO;  /* huh! */
      }

      /* 
       * Get process addresses from dll for function access
       */

      /* Open_USB_Device */
      extra_priv->FT_Open =
            (FNCFT_Open) GetProcAddress(extra_priv->dll, "FT_Open");
      /* Close_USB_Device */
      extra_priv->FT_Close = 
            (FNCFT_Close) GetProcAddress(extra_priv->dll, "FT_Close");
      /* Set_USB_Device_BitMode */
      extra_priv->FT_SetBitMode = 
            (FNCFT_SetBitMode) GetProcAddress(extra_priv->dll, "FT_SetBitMode");
      /* Set_USB_Device_BaudRate */
      extra_priv->FT_SetBaudRate = 
            (FNCFT_SetBaudRate) GetProcAddress(extra_priv->dll, "FT_SetBaudRate");
      /* Write_USB_Device_Buffer */
      extra_priv->FT_Write = 
            (FNCFT_Write) GetProcAddress(extra_priv->dll, "FT_Write");

      rig->state.priv = (void*)priv;

      return RIG_OK;
}

int elektor507_ftdi_write_data(RIG *rig, void *FTOutBuf, unsigned long BufferSize)
{
      struct elektor507_extra_priv_data *extra_priv = 
            &((struct elektor507_priv_data *)rig->state.priv)->extra_priv;
      FT_Result ret;
      int Result;

      rig_debug(RIG_DEBUG_TRACE,"%s called, %d bytes\n", __FUNCTION__, BufferSize);

      /* Open FTDI */
      ret = extra_priv->FT_Open(0, &extra_priv->ftHandle);
      if (ret != FT_OK)
            return -RIG_EIO;

      ret = extra_priv->FT_SetBitMode(extra_priv->ftHandle, 0xff, 1);
      if (ret != FT_OK)
            return -RIG_EIO;

      ret = extra_priv->FT_SetBaudRate(extra_priv->ftHandle, 38400);
      if (ret != FT_OK)
            return -RIG_EIO;

      ret = extra_priv->FT_Write(extra_priv->ftHandle, FTOutBuf, BufferSize, &Result);
      if (ret != FT_OK) {
            rig_debug(RIG_DEBUG_ERR,"FT_Write failed: %d, Result: %d\n", ret, Result);
            return -RIG_EIO;
      }

      ret = extra_priv->FT_Close(extra_priv->ftHandle);
      if (ret != FT_OK)
            return -RIG_EIO;

      return RIG_OK;
}

int elektor507_cleanup(RIG *rig)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;

      if (!rig)
            return -RIG_EINVAL;

      /* Clean up the dll access */
      FreeLibrary(priv->extra_priv.dll);

      if (rig->state.priv)
            free(rig->state.priv);
      rig->state.priv = NULL;

      return RIG_OK;
}

const char * elektor507_get_info(RIG *rig)
{
      static char buf[64];

      sprintf(buf, "Elektor SDR USB w/ FTDI DLL");

      return buf;
}



#elif defined(USE_LIBUSB)


/*
 * The libusb code is inspired by libftdi:
 *    http://www.intra2net.com/de/produkte/opensource/ftdi/
 */
int elektor507_init(RIG *rig)
{
      hamlib_port_t *rp = &rig->state.rigport;
      struct elektor507_priv_data *priv;

      priv = (struct elektor507_priv_data*)calloc(sizeof(struct elektor507_priv_data), 1);
      if (!priv) {
            /* whoops! memory shortage! */
            return -RIG_ENOMEM;
      }

      priv->xtal_cal = XTAL_CAL;
      priv->osc_freq = OSCFREQ;
      priv->ant = ANT_AUTO;

      /* DIV1N set to safe default */
      priv->Div1N = 8;
      priv->P = 8;
      priv->Q = 2;

      rp->parm.usb.vid = USB_VID_FTDI;
      rp->parm.usb.pid = USB_PID_FTDI_FT232;
      rp->parm.usb.conf = 1;
      rp->parm.usb.iface = 0;
      rp->parm.usb.alt = 0;   /* necessary ? */

      rig->state.priv = (void*)priv;

      return RIG_OK;
}

int elektor507_cleanup(RIG *rig)
{
      if (!rig)
            return -RIG_EINVAL;

      if (rig->state.priv)
            free(rig->state.priv);
      rig->state.priv = NULL;

      return RIG_OK;
}

const char * elektor507_get_info(RIG *rig)
{
      static char buf[64];
      struct usb_dev_handle *udh = rig->state.rigport.handle;
      struct usb_device *q = usb_device(udh);

      sprintf(buf, "USB dev %04d", q->descriptor.bcdDevice);

      return buf;
}

int elektor507_libusb_setup(RIG *rig)
{
      struct usb_dev_handle *udh = rig->state.rigport.handle;
      int ret;
      unsigned short index=0, usb_val;

      rig_debug(RIG_DEBUG_TRACE,"%s called\n", __FUNCTION__);

      /* Reset the ftdi device */
#if 1
      ret =  usb_control_msg(udh, 0x40, 0, 0, index, NULL, 0, FTDI_USB_WRITE_TIMEOUT);
      if (ret != 0) {
            rig_debug (RIG_DEBUG_ERR, "%s: usb_control_msg reset failed: %s\n", 
                              __FUNCTION__,
                              usb_strerror ());
            return -RIG_EIO;
      }
#endif

      /*
       * Enable bitbang mode
       */
      usb_val = 0xff; /* low byte: bitmask */
      usb_val |= (0x01 << 8); /* Basic bitbang_mode: 0x01 */

      ret = usb_control_msg(udh, 0x40, 0x0B, usb_val, index, NULL, 0, FTDI_USB_WRITE_TIMEOUT);
      if (ret != 0) {
            rig_debug (RIG_DEBUG_ERR, "%s: usb_control_msg bitbangmode failed: %s\n", 
                              __FUNCTION__,
                              usb_strerror ());
            return -RIG_EIO;
      }

      /*
       * Set baudrate
       * 9600 x4 because of bitbang mode
       */
      usb_val = 49230;  /* magic value for 38400 bauds */
      index = 0;
      ret = usb_control_msg(udh, 0x40, 3, usb_val, index, NULL, 0, FTDI_USB_WRITE_TIMEOUT);
      if (ret != 0) {
            rig_debug (RIG_DEBUG_ERR, "%s: usb_control_msg baudrate failed: %s\n", 
                              __FUNCTION__,
                              usb_strerror ());
            return -RIG_EIO;
      }

      return RIG_OK;
}

int elektor507_ftdi_write_data(RIG *rig, void *FTOutBuf, unsigned long BufferSize)
{
      struct usb_dev_handle *udh = rig->state.rigport.handle;
      int ret;

      rig_debug(RIG_DEBUG_TRACE,"%s called, %d bytes\n", __FUNCTION__, BufferSize);

      ret = usb_bulk_write(udh, FTDI_IN_EP, FTOutBuf, BufferSize, FTDI_USB_WRITE_TIMEOUT);
      if (ret < 0) {
            /* we get EPIPE if the firmware stalls the endpoint. */
            if (errno != EPIPE)
                  rig_debug (RIG_DEBUG_ERR, 
                              "usb_bulk_write failed: %s\n", 
                              usb_strerror ());
            return -RIG_EIO;
      }

      return RIG_OK;
}
#endif      /* USE_LIBUSB */



#define ELEKTOR507_MODES (RIG_MODE_USB)   /* USB is for SDR */

#define ELEKTOR507_FUNC (RIG_FUNC_NONE)

#define ELEKTOR507_LEVEL_ALL (RIG_LEVEL_ATT)

#define ELEKTOR507_PARM_ALL (RIG_PARM_NONE)

#define ELEKTOR507_VFO (RIG_VFO_A)

/*
 * - Auto-filter antenna (K3)
 * - External antenna (PC1)
 * - Internal TEST_CLK (5 MHz)
 */
#define ELEKTOR507_ANT (RIG_ANT_1|RIG_ANT_2|RIG_ANT_3)


/*
 * Elektor SDR USB (5/07) receiver description
 *
 * This kit is a QSD based on a CY27EE16ZE PLL.
 * The receiver is controlled via USB (through FTDI FT232R).
 *
 * Original artical:
 * http://www.elektor.com/magazines/2007/may/software-defined-radio.91527.lynkx
 *
 * Author (Burkhard Kainka) page, in german:
 * http://www.b-kainka.de/sdrusb.html
 */

const struct rig_caps elektor507_caps = {
.rig_model =  RIG_MODEL_ELEKTOR507,
.model_name = "Elektor SDR-USB",
.mfg_name =  "Elektor",
.version =  "0.2",
.copyright =  "LGPL",
.status =  RIG_STATUS_STABLE,
.rig_type =  RIG_TYPE_TUNER,
.ptt_type =  RIG_PTT_NONE,
.dcd_type =  RIG_DCD_NONE,
#ifdef USE_LIBUSB
.port_type =  RIG_PORT_USB,
#else
.port_type =  RIG_PORT_NONE,
#endif
.serial_rate_min =  9600,
.serial_rate_max =  9600,
.serial_data_bits =  8,
.serial_stop_bits =  1,
.serial_parity =  RIG_PARITY_NONE,
.serial_handshake =  RIG_HANDSHAKE_NONE,
.write_delay =  0,
.post_write_delay =  0,
.timeout =  200,
.retry = 0,

.has_get_func =  ELEKTOR507_FUNC,
.has_set_func =  ELEKTOR507_FUNC,
.has_get_level =  ELEKTOR507_LEVEL_ALL,
.has_set_level =  RIG_LEVEL_SET(ELEKTOR507_LEVEL_ALL),
.has_get_parm =  ELEKTOR507_PARM_ALL,
.has_set_parm =  RIG_PARM_SET(ELEKTOR507_PARM_ALL),
.level_gran =  {},
.parm_gran =  {},
.ctcss_list =  NULL,
.dcs_list =  NULL,
.preamp =   { RIG_DBLST_END },
.attenuator =   { 10, 20, RIG_DBLST_END },
.max_rit =  Hz(0),
.max_xit =  Hz(0),
.max_ifshift =  Hz(0),
.targetable_vfo =  0,
.transceive =  RIG_TRN_OFF,
.bank_qty =   0,
.chan_desc_sz =  0,

.chan_list =  { RIG_CHAN_END, },

.rx_range_list1 =  {
    {kHz(30),MHz(30)-kHz(1),ELEKTOR507_MODES,-1,-1,ELEKTOR507_VFO, ELEKTOR507_ANT},
      RIG_FRNG_END,
  },
.tx_range_list1 =  { RIG_FRNG_END, },
.rx_range_list2 =  {
    {kHz(30),MHz(30)-kHz(1),ELEKTOR507_MODES,-1,-1,ELEKTOR507_VFO, ELEKTOR507_ANT},
      RIG_FRNG_END,
  },
.tx_range_list2 =  { RIG_FRNG_END, },
.tuning_steps =  {
       {ELEKTOR507_MODES,kHz(1)},
       RIG_TS_END,
      },
        /* mode/filter list, remember: order matters! */
.filters =  {
            {RIG_MODE_USB, kHz(24)},      /* bandpass may be more */
            RIG_FLT_END,
      },
.cfgparams =  elektor507_cfg_params,

.rig_init =     elektor507_init,
.rig_cleanup =  elektor507_cleanup,
.rig_open =     elektor507_open,
.set_conf =  elektor507_set_conf,
.get_conf =  elektor507_get_conf,


.set_freq    =  elektor507_set_freq,
.get_freq    =  elektor507_get_freq,
.set_level   =  elektor507_set_level,
.get_level   =  elektor507_get_level,
.set_ant     =  elektor507_set_ant,
.get_ant     =  elektor507_get_ant,
.get_info    =  elektor507_get_info,

};


int elektor507_set_conf(RIG *rig, token_t token, const char *val)
{
      struct elektor507_priv_data *priv;
      freq_t freq;

      priv = (struct elektor507_priv_data*)rig->state.priv;

      switch(token) {
            case TOK_OSCFREQ:
                  sscanf(val, "%"SCNfreq, &freq);
                  priv->osc_freq = freq / kHz(1);
                  break;
            case TOK_XTALCAL:
                  sscanf(val, "%u", &priv->xtal_cal);
                  break;
            default:
                  return -RIG_EINVAL;
      }
      return RIG_OK;
}

int elektor507_get_conf(RIG *rig, token_t token, char *val)
{
      struct elektor507_priv_data *priv;

      priv = (struct elektor507_priv_data*)rig->state.priv;

      switch(token) {
            case TOK_OSCFREQ:
                  sprintf(val, "%"PRIfreq, priv->osc_freq*kHz(1));
                  break;
            case TOK_XTALCAL:
                  sprintf(val, "%u", priv->xtal_cal);
                  break;
            default:
                  return -RIG_EINVAL;
      }
      return RIG_OK;
}



int elektor507_open(RIG *rig)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int ret;

      rig_debug(RIG_DEBUG_TRACE,"%s called\n", __FUNCTION__);

      /*
       * Setup the FT232R.
       */
#ifdef USE_LIBUSB
      ret = elektor507_libusb_setup(rig);
      if (ret != RIG_OK)
            return ret;
#endif

      /* Init the FT232R port to SCL/SDA high, Mux A0, Att 0 */
      priv->FT_port = 0x03;


      /*
       * Setup the CY27EE16ZE PLL.
       */

      /* Enable only CLOCK5. CLOCK3 will be on demand in set_ant() */
      ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, CLKOE_REG, 0x20);
      if (ret != 0)
            return ret;

      /* DIV1N set to safe default */
      priv->Div1N = 8;
      ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, DIV1_REG, priv->Div1N);
      if (ret != 0)
            return ret;

#if 0
      /* Xtal gain setting */
      ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, XTALCTL_REG, 0x32);
      if (ret != 0)
            return ret;

      /* CapLoad set to middle */
      ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, CAPLOAD_REG, priv->xtal_cal);
      if (ret != 0)
            return ret;
#endif
      /* CLKSRC: CLOCK3=DIV2CLK/2, CLOCK5=DIV1CLK/DIV1N */
      ret = i2c_write_regs(rig, CY_I2C_RAM_ADR, 3, CLKSRC_REG, 0x02, 0x8e, 0x47);
      if (ret != 0)
            return ret;

      /* DIV2SRC from REF */
      ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, DIV2_REG, 0x88);
      if (ret != 0)
            return ret;

      return RIG_OK;
}


#ifdef ORIG_ALGORITHM

static void find_P_Q(struct elektor507_priv_data *priv, freq_t freq)
{
      double Min, VCO;
      int p, q, q_max;

      Min = priv->osc_freq;
      freq /= kHz(1);

      /*
       * Q:2..129
       * P:8..2055, best 16..1023 (because of Pump)
       
         For stable operation:
         + REF/Qtotal must not fall below 250kHz (
         + P*(REF/Qtotal) must not be above 400 MHz or below 100 MHz
        */
#if 1
      q_max = priv->osc_freq/250;
#else
      q_max = 100;
#endif
      for (q = q_max; q >= 10; q--) {
            for (p = 500; p <= 2000; p++) {
                  VCO = ((double)priv->osc_freq/q)*p;

                  if (fabs(4*freq-VCO/priv->Div1N) < Min) {
                        Min = fabs(4*freq - VCO/priv->Div1N);
                        priv->Q = q;
                        priv->P = p;
                  }
            }
      }

      VCO = ((double)priv->osc_freq/priv->Q)*priv->P;
      if (VCO < 100e3 || VCO > 400e3)
            rig_debug(RIG_DEBUG_VERBOSE, "%s: Unstable parameters for VCO=%.1f\n", 
                  __FUNCTION__, VCO);
}
#else /* ORIG_ALGORITHM */

static void find_P_Q_DIV1N(struct elektor507_priv_data *priv, freq_t freq)
{
      double Min, VCO, freq4;
      int div1n_min, div1n_max;
      int p, q, div1n, q_max;

      Min = priv->osc_freq;
      freq4 = freq*4/kHz(1);

#define vco_min 100e3
#define vco_max 500e3
      /*
       * Q:2..129
       * P:8..2055, best 16..1023 (because of Pump)
       
         For stable operation:
         + REF/Qtotal must not fall below 250kHz (
         + P*(REF/Qtotal) must not be above 400 MHz or below 100 MHz
        */
#if 1
      q_max = priv->osc_freq/250;
#else
      q_max = 100;
#endif
      div1n_min = vco_min/freq4;
      if (div1n_min < 2)
            div1n_min = 2;
      else if (div1n_min > 127)
            div1n_min = 127;
      div1n_max = vco_max/freq4;
      if (div1n_max > 127)
            div1n_max = 127;
      else if (div1n_max < 2)
            div1n_max = 2;


      for (div1n = div1n_min; div1n <= div1n_max; div1n++) {
            // P/Qtotal = FREQ4*DIV1N/REF
            // (Q*int(r) + frac(r)*Q)/Q 
            for (q = q_max; q >= 2; q--) {
                  p = q*freq4*div1n/priv->osc_freq;
#if 1
                  if (p < 16 || p > 1023)
                        continue;
#endif

                  VCO = ((double)priv->osc_freq/q)*p;
#if 1
                  if (VCO < vco_min || VCO > vco_max)
                        continue;
#endif
                  if (fabs(freq4-VCO/div1n) < Min) {
                        Min = fabs(freq4 - VCO/div1n);
                        priv->Div1N = div1n;
                        priv->Q = q;
                        priv->P = p;
                  }
            }
      }

      VCO = ((double)priv->osc_freq/priv->Q)*priv->P;
      if (VCO < vco_min || VCO > 400e3)
            rig_debug(RIG_DEBUG_VERBOSE, "%s: Unstable parameters for VCO=%.1f\n", 
                  __FUNCTION__, VCO);
}

#endif      /* ORIG_ALGORITHM */

int elektor507_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      freq_t final_freq;
      int ret=0;
      int Mux;
#ifdef ORIG_ALGORITHM
      int Freq;
#endif

      if (priv->ant == ANT_AUTO) {
            /* Automatically select appropriate filter */
            if (freq <= kHz(1600)) {
                  /* Select A1, low pass, fc=1.6MHz */
                  Mux = 1;
            } else {
                  /* Select A2, high pass */
                  Mux = 2;
            }
            priv->FT_port &= 0x63;  //0,1 = I2C, 2,3,4=MUX, 5,6=Attenuator
            priv->FT_port |= Mux << 2;
      }

      /*
       * Compute PLL parameters
       */

#ifdef ORIG_ALGORITHM
      Freq = freq / kHz(1);

      if (Freq > 19 && Freq < 60)
      {
            priv->Div1N = (2500 + Freq/2) / Freq + 128;
            priv->P = 1000;
            priv->Q = 40;
      }
      else
      if (Freq > 59 && Freq < 801)
      {
            priv->Div1N = 125;
            priv->P = Freq * 2;
            priv->Q = 40;
      }
      else
      if (Freq > 800 && Freq < 2001)
      {
            priv->Div1N = 50;
            priv->P = Freq;
            priv->Q = 50;
      }
      else
      if (Freq > 2000 && Freq < 4001)
      {
            priv->Div1N = 25;
            find_P_Q(priv, freq);
      }
      else
      if (Freq > 4000 && Freq < 10001)
      {
            priv->Div1N = 10;
            find_P_Q(priv, freq);
      }
      else
      if (Freq > 10000 && Freq < 20001)
      {
            priv->Div1N = 5;
            find_P_Q(priv, freq);
      }
      else
      if (Freq > 20000 && Freq < 30001)
      {
            priv->Div1N = 4;
            find_P_Q(priv, freq);
      }
#else
      find_P_Q_DIV1N(priv, freq);
#endif


      elektor507_get_freq(rig, vfo, &final_freq);
      rig_debug(RIG_DEBUG_VERBOSE, "%s: Freq=%.0f kHz, delta=%d Hz, Div1N=%d, P=%d, Q=%d\n", 
                  __FUNCTION__, freq/kHz(1), (int)(final_freq-freq), priv->Div1N, priv->P, priv->Q);

      if ((double)priv->osc_freq/priv->Q < 250)
            rig_debug(RIG_DEBUG_WARN, 
                        "%s: Unstable parameters for REF/Qtotal=%.1f\n", 
                  __FUNCTION__, (double)priv->osc_freq/priv->Q);

      ret = cy_update_pll(rig, CY_I2C_RAM_ADR);

      return (ret != 0) ? -RIG_EIO : RIG_OK;
}

int elektor507_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      double VCO;

      VCO = ((double)priv->osc_freq * kHz(1)) / priv->Q * priv->P;

      /* Div by 4 because of QSD */
      *freq = (VCO / priv->Div1N) / 4;

      return RIG_OK;
}

int elektor507_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int ret=0;
      int att=0;
      
      switch(level) {
      case RIG_LEVEL_ATT:
            /* val.i */
            /* FTDI: DSR, DCD */

            switch (val.i) {
                  case 0: att = 0; break;
                  case 10: att = 1; break;
                  case 20: att = 2; break;
                  default: return -RIG_EINVAL;
            }

            priv->FT_port &= 0x1f;
            priv->FT_port |= (att&0x3) << 5;

            ret = elektor507_ftdi_write_data(rig, &priv->FT_port, 1);

            break;

      default:
            return -RIG_EINVAL;
      }

      return (ret != 0) ? -RIG_EIO : RIG_OK;
}

int elektor507_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int ret=0;
      
      switch(level) {
      case RIG_LEVEL_ATT:

            switch ((priv->FT_port >> 5) & 3) {
                  case 0: val->i = 0; break;
                  case 1: val->i = 10; break;
                  case 2: val->i = 20; break;
                  default:
                        ret = -RIG_EINVAL;
            }

            break;

      default:
            return -RIG_EINVAL;
      }

      return (ret != 0) ? -RIG_EIO : RIG_OK;
}


int elektor507_set_ant(RIG * rig, vfo_t vfo, ant_t ant)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int ret, Mux;

      rig_debug(RIG_DEBUG_TRACE,"%s called\n", __FUNCTION__);

      /* 
       * FTDI: RTS, CTS, DTR
       *
       * A4,A5,A6 are not connected
       *
       * ANT1->A1/A2, ANT2->A3, ANT3->A7
       */

      switch(ant) {
      case RIG_ANT_1: Mux = 0; break;     /* Mux will be updated upon next set_freq */
      case RIG_ANT_2: Mux = 3; break;     /* ANT_EXT */
      case RIG_ANT_3: Mux = 7; break; /* ANT_TEST_CLK */
      default:
                  return -RIG_EINVAL;
      }
      priv->ant = ant;

      priv->FT_port &= 0x63;  //0,1 = I2C, 2,3,4=MUX, 5,6=Attenuator
      priv->FT_port |= Mux << 2;

#if 0
      ret = elektor507_ftdi_write_data(rig, &priv->FT_port, 1);
#else
      /* Enable CLOCK3 on demand */
      ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, CLKOE_REG, 0x20 | (ant==RIG_ANT_3 ? 0x04 : 0));
#endif

      return (ret != 0) ? -RIG_EIO : RIG_OK;
}

int elektor507_get_ant(RIG * rig, vfo_t vfo, ant_t *ant)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;

      *ant = priv->ant;

      return RIG_OK;
}


/*
 * Update the PLL counters
 */
static int cy_update_pll(RIG *rig, unsigned char IICadr)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int P0, R40, R41, R42;
      unsigned char Div1N;
      unsigned char Clk3_src;
      int Pump;
      int ret;

      /* 
       * PLL Pump setting according to table 9
       */
        if (priv->P < 45)
            Pump = 0;
      else 
        if (priv->P < 480)
            Pump = 1;
      else 
        if (priv->P < 640)
            Pump = 2;
      else 
        if (priv->P < 800)
            Pump = 3;
      else
            Pump = 4;

      P0 = priv->P & 0x01;
      R40 = (((priv->P >> 1) - 4) >> 8) | (Pump << 2) | 0xc0;
      R41 =  ((priv->P >> 1) - 4) & 0xff;
      R42 = (priv->Q - 2) | (P0<<7);


      ret = i2c_write_regs(rig, IICadr, 3, PUMPCOUNTERS_REG, R40, R41, R42);
      if (ret != 0)
            return ret;

      switch (priv->Div1N) {
            case 2:
                  /* Fixed /2 divider option */
                  Clk3_src = 0x80;
                  Div1N = 8;
                  break;
            case 3:
                  /* Fixed /3 divider option */
                  Clk3_src = 0xc0;
                  Div1N = 6;
                  break;
            default:
                  Div1N = priv->Div1N;
                  Clk3_src = 0x40;
      }

      ret = i2c_write_reg(rig, IICadr, DIV1_REG, Div1N);
      if (ret != 0)
            return ret;


      /* Set 2 low bits of CLKSRC for CLOCK5. DIV1CLK is set already */
      ret = i2c_write_reg(rig, IICadr, CLKSRC_REG+2, Clk3_src|0x07);
      if (ret != 0)
            return ret;

      return RIG_OK;
}


static void ftdi_SCL(RIG *rig, int d)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;

      if (priv->Buf_adr >= FT_OUT_BUFFER_MAX)
            return;
      /*
       * FTDI RXD->SCL
       */

      if (d == 0)
            priv->FT_port &= ~0x02;
      else
            priv->FT_port |= 0x02;

      priv->FT_Out_Buffer[priv->Buf_adr++] = priv->FT_port;
}

static void ftdi_SDA(RIG *rig, int d)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;

      if (priv->Buf_adr >= FT_OUT_BUFFER_MAX)
            return;
      /*
       * FTDI TXD->SDA
       */

      if (d == 0)
            priv->FT_port &= ~0x01;
      else
            priv->FT_port |= 0x01;

      priv->FT_Out_Buffer[priv->Buf_adr++] = priv->FT_port;
}

static void ftdi_I2C_Init(RIG *rig)
{
      ftdi_SCL(rig, 1); ftdi_SDA(rig, 1);          /* SCL=1, SDA=1 */
}

static void ftdi_I2C_Start(RIG *rig)
{
      ftdi_SDA(rig, 0);          /* SDA=0 */
      ftdi_SCL(rig, 0);          /* SCL=0 */
}

static void ftdi_I2C_Stop(RIG *rig)
{
      ftdi_SCL(rig, 0); ftdi_SDA(rig, 0);  /* SCL=0, SDA=0 */
      ftdi_SCL(rig, 1);          /* SCL=1 */
      ftdi_SDA(rig, 1);          /* SDA=1 */
}

/*
      Acknowledge:
        SCL=0, SDA=0
        SCL=1
        SCL=0
      
      No Acknowledge:
        SCL=0, SDA=1
        SCL=1
        SCL=0
 */

static void ftdi_I2C_Write_Byte(RIG *rig, unsigned char c)
{
      int i;

      for (i=7; i>=0; i--)
      {
            ftdi_SDA(rig, c & (1<<i));          /* SDA value */

            ftdi_SCL(rig, 1);
            ftdi_SCL(rig, 0);
      }
      ftdi_SDA(rig, 1);
      ftdi_SCL(rig, 1);
      ftdi_SCL(rig, 0);
}


int i2c_write_regs(RIG *rig, unsigned char IICadr, int reg_count, unsigned char reg_adr, 
            unsigned char reg_val1, unsigned char reg_val2, unsigned char reg_val3)
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int ret;

      /* Start with a new buffer */
      priv->Buf_adr = 0;

      ftdi_I2C_Init(rig);
      ftdi_I2C_Start(rig);
      ftdi_I2C_Write_Byte (rig, IICadr);
      ftdi_I2C_Write_Byte (rig, reg_adr);

      if (reg_count >= 1)
            ftdi_I2C_Write_Byte (rig, reg_val1);
      if (reg_count >= 2)
            ftdi_I2C_Write_Byte (rig, reg_val2);
      if (reg_count >= 3)
            ftdi_I2C_Write_Byte (rig, reg_val3);

      ftdi_I2C_Stop(rig);
      //usleep(10000);

      ret = elektor507_ftdi_write_data(rig, priv->FT_Out_Buffer, priv->Buf_adr);

      if (ret != 0)
            return -RIG_EIO;
      return 0;
}


#if 0
static const unsigned char ftdi_code[256] = {
  0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x34, 0x08, 0x5a, 0x24/*0x6f*/, 0x00, 0x14, 0x0a, 0x00, 0x08, 0x88,
  0x50, 0x04, 0x32, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0xd1, 0x2b, 0x17, 0x00, 0xfe, 0xfe, 0x7f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
  0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32
};

int load_ftdi_code(RIG *rig, unsigned char IICadr, const unsigned char code[])
{
      struct elektor507_priv_data *priv = (struct elektor507_priv_data *)rig->state.priv;
      int ret;
      int i, j;

      rig_debug(RIG_DEBUG_TRACE,"%s called\n", __FUNCTION__);

      for (i = 0; i<16; i++)
      {
            /* Start with a new buffer */
            priv->Buf_adr = 0;
            ftdi_I2C_Init(rig);
            ftdi_I2C_Start(rig);
            ftdi_I2C_Write_Byte (rig, IICadr);
            ftdi_I2C_Write_Byte (rig, i*16);

            for (j = 0; j<16; j++)
            {
                  ftdi_I2C_Write_Byte (rig, code[i*16+j]);
            }
            ftdi_I2C_Stop(rig);

            ret = elektor507_ftdi_write_data(rig, priv->FT_Out_Buffer, priv->Buf_adr);
            if (ret != 0)
                  return -RIG_EIO;
      }

      return RIG_OK;
}
#endif

#endif      /* defined(USE_FTDI_DLL) || defined(USE_LIBUSB) */

Generated by  Doxygen 1.6.0   Back to index